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A phenomenological model of longitudinal mixing of particles in a circulating fluidized bed is formulated. The
model allows for the main features of the process: ascending motion of particles in the core of the bed and
their descending motion in the annular zone (internal circulation of the solid phase); considerable changes in
the concentration of particles and in the values of the ascending and descending zones over the bed height;
external circulation of the solid phase and the effect of the near-bottom fluidized bed on the process as a
whole. The validity of the initial proposition is confirmed by comparison of calculated and experimental
curves of mixing.

The technology of a circulating fluidized bed (CFB) is of considerable current use in industry and power en-
gineering [1, 2]. Due to the comparatively short period of study, the main laws governing heat and mass transfer in a
CFB have not been adequately researched, thus making it difficult to develop and design new large-scale apparatuses
with a CFB. This is in full measure true of mixing of the solid phase, the studies of which are of great practical in-
terest for processes where continuous treatment of particles (drying, firing, combustion, etc.) is carried out or these
particles gradually change their properties and need replacement (poisoning of the catalyst). Moreover, the character of
mixing of particles due to their thousand-fold higher heat capacity per unit volume as compared to a gas determines
the mechanism of heat transfer and equalization of temperatures in the apparatus.

By virtue of the existing [1] features of the structure of a CFB and its internal hydromechanics (substantial
nonuniformity of the concentration of particles over both the height of the riser and its horizontal cross section, intense
internal circulation of the solid phase, etc.), the process of mixing of the particles in this system is rather difficult for
experimental investigation and for mathematical modeling. At present, only fragmentary data on the regularities of the
process are available in the literature; these data are insufficient for quantitative, and often qualitative, evaluation of
the influence of different factors on the intensity of mixing. The central problem with the studies is a correct interpre-
tation of the obtained experimental data, which is directly connected with the rational choice of a physical model of
the process.

The simplest one-zone model with a single parameter – the coefficient of effective longitudinal dispersion of
particles — was used in [3] for analysis of experimental curves of distribution of the times of residence of particles
in a CFB with a diameter of 0.152 and 0.305 m. The two-parameter model which involves the velocity of particles
and the coefficient of longitudinal dispersion was used in [4] for analysis of the curves of wash-out of a tracer from
a CFB with a diameter of 0.14 m. Bai et al. do not give recommendations on determination of the velocity of the
solid phase. A more complex two-parameter, two-dimensional (along the coordinates r and x) model which allows for
the real structure of particle fluxes in a CFB (ascending motion in the bed core and descending motion near the riser
walls) and the radial dispersion of labeled (tagged) particles was used in [5]. The model considers the particular case
of a constant concentration of particles over the riser height which limited the range of its use. In [6], a rather com-
plex multiparametric circulation model of mixing, which allows for the two-zone structure of a CFB, is proposed. A
substantial disadvantage of the model is an incorrect representation of diffusion and exchange terms which do not dis-
appear at large times when the process of mixing ceases and c1 = c2 = c∞. It should be emphasized that this, to the
same extent, is true of the models mentioned above where the form of representation of diffusion terms follows from
the Fick law for systems with a constant density. Since, as is well known, a CFB is a system in which the density
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substantially changes in both the horizontal and vertical directions, the fact mentioned limits the applicability range of
these models.

The present work is aimed at formulating a simple and rather universal model of mixing of particles in a
CFB, which allows for the most important features of the structure and hydrodynamics of the bed and involves a
minimum number of parameters to be determined. The main assumptions which form the basis for the model are as
follows:

1. In the central part of the bed (the core), the ascending motion of particles at a velocity u1 and descending
motion in the annular zone at a velocity u2 form the internal circulation of the solid phase (Fig. 1). The following for-
mulas are used to calculate these velocities [7, 8]:

u1 = u − ut , (1)

u2 = 0.1 (u − ut) Frt
−0.7

 . (2)

As is seen, the velocities u1 and u2 are constant over the bed height.
2. The existence of the loop of external circulation of the solid phase that is produced by the particle flux

Js escaping from the upper part of the riser and then returning to the bed base (Fig. 1) is taken into account.
3. In each horizontal cross section of the riser, the equality

Js = Aρ1u1 − Bρ2u2 , (3)

holds; this equality determined the value of the specific circulation particle flux Js which is constant over the bed
height and determines the intensity of external circulation of the solid phase.

4. The local concentrations of particles in the core (ρ1) and the annular zone (ρ2) are interrelated as 

ρ2 = nρ1 , (4)

where n is a constant coefficient. From the data of [9], n E 2−3.
5. The mean (over the horizontal cross section of the riser) density of the bed ρ = Aρ1 + Bρ2 is variable over

the height and is described by an empirical formula [10]:

ρ
ρs

 = J
_

s(x
′)−0.82

 ,  H0
′  ≤ x′ ≤ 1 . (5)

6. The relative fractions of the bed core (A) and the annular zone (B) change with height; in this case, in any
horizontal cross section of the bed we have

A + B = 1 . (6)

Formulas to calculate A and B can easily be obtained on the basis of (3)–(6):

A = n 
u2

′  + (x′)0.82

u1
′  + nu2

′  − (x′)0.82
 (1 − n)

 , (7)

B = 
u1

′  − (x′)0.82

u1
′  + nu2

′  − (x′)0.82
 (1 − n)

 . (8)

7. The zone with a constant density and ideal mixing of particles – the near-bottom fluidized bed – exists in
the lower part of the bed (Fig. 1). Its height is calculated from the formula [11]:
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H0
′  = 1.25 Frt

−0.8
 J
_

s
1.1

 . (9)

From the data of [12], the porosity of the fluidized bed slightly depends on the velocity of the gas and is a rather
stable quantity. In [11], it is suggested to determine it from the expression

εfb = 1 − 0.33 Frt
−0.045

 . (10)

8. The exchange of labeled particles is carried out between the bed core and the annular zone. The coefficient
of exchange β∗  is taken to be independent of the vertical coordinate x.

9. In both the ascending and descending zones, in addition to convective transfer, we have dispersion transfer
of labeled particles with the coefficients D1 and D2, respectively.

10. Changes in CFB characteristics in the horizontal direction are neglected.
First, we write the continuity equations for the solid-phase flows in the bed core and the annular zone:

∂Aρ1

∂t
 + u1 

∂Aρ1

∂x
 = −Aβ1ρ1 , (11)

∂Bρ2

∂t
 − u2

∂Bρ2

∂x
 = Aβ1ρ1 . (12)

Within the framework of the one-dimensional model, the quantity Aβ1ρ1 ∗  allows for the existence of the ra-
dial particle flux Jr from the bed core to the annular zone (Fig. 2); this flux provides the experimentally observed de-
crease in the densities ρ1 and ρ2 with height at virtually constant values of the velocities u1 and u2. Having summed
up (11) and (12), with account for (3) we obtain the continuity equation for the flow of external circulation of the
solid phase

Fig. 1. Model of mixing of particles in a CFB.

Fig. 2. Schematic of particle fluxes in a CFB.

 * In this case, the specific form of this quantity is not of fundamental importance, since in what follows we use only

the equality Aβ1ρ1 = −u1 
∂Aρ1

dx
, which follows from (11) under steady-state conditions.
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∂ρ
∂t

 + 
∂Js

∂x
 = 0 , (13)

which leads to the constancy of Js under steady-state conditions.
With account for the assumptions made, we formulate the system of equations describing the longitudinal

mixing of particles in the CFB riser:
the bed core

∂Aρ1c1

∂t
 + u1 

∂Aρ1c1

∂x
 = 

∂
∂x

 



Aρ1D1 

∂c1

∂x




 + β∗ ρ (c2 − c1) − Aρ1β1c1 , (14)

the annular zone

∂Bρ2c2

∂t
 − u2

∂Bρ2c2

∂x
 = 

∂
∂x

 



Bρ2D2 

∂c2

∂x




 + β∗ ρ (c1 − c2) + Aρ1β1c1 . (15)

The form of the diffusion terms in (14) and (15) corresponds to the Fick law in a medium with a variable
density [13]:

ji = −ρiDi 
∂ci

∂x
 ,  i = 1, 2 . (16)

The contribution of these terms is most likely estimated by the quantity 1 ⁄ P
~

e = D
~ ⁄ (u − ut)H, where D

~
 is a coefficient

which has the order of D1 and D2. With account for D
~

 F 10−3 m2 ⁄ sec [1, p. 345], for 1 ⁄ P
~

e we obtain the estimate
1 ⁄ P

~
e E 0.2⋅10−4 for H = 10 m and u − ut = 5 m/sec, which indicates that the fraction of the diffusion terms in (14) and

(15) is negligible. With account for this fact and the continuity equations (11) and (12), system (14), (15) can be rep-
resented as follows:

Aρ1 
∂c1

∂t
 + Aρ1u1 

∂c1

∂x
 = β∗ ρ (c2 − c1) , (17)

Bρ2 
∂c2

∂t
 − Bρ2u2 

∂c2

∂x
 = (β∗ ρ + Aρ1β1) (c1 − c2) . (18)

Despite the simplicity of the apparatus, the system of equations (17), (18) has a rich content and reflects vir-
tually all the most important aspects of longitudinal mixing of particles in the CFB.

For further analysis, we introduce the following notation: p = Aρ1, l = Bρ2, β = β∗ ρ, and β
__

 = β + Aρ1β1. Elimi-
nating in turn c1 and c2 from (17) and (18), we reduce these equations to the form




1 + 

p
l
 
β
__

β
 − u2

∂
∂x

 


p
β








 
∂c1

∂t
 + 



p
l
 
β
__

β
 u1 − u2 − u1u2 

∂
∂x

 


p
β








 
∂c1

∂x
 + 

+ 
p
β

 
∂2

c1

∂t
2  + 

p
β

 (u1 − u2) 
∂2

c1

∂t∂x
 − 

p
β

 u1u2 
∂2

c1

∂x
2  = 0 , (19)




1 + 

l
p

 
β

β
__ + u1

∂
∂x

 


l

β
__







 
∂c2

∂t
 + 




− 

l
p

 
β

β
__ u2 + u1 − u1u2 

∂
∂x

 


l

β
__







 
∂c2

∂x
 +
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+ 
l

β
__ 

∂2
c2

∂t
2  + 

l

β
__ (u1 − u2) 

∂2
c2

∂t∂x
 − 

l

β
__ u1u2 

∂2
c2

∂x
2  = 0 . (20)

Equations (19) and (20) are hyperbolic equations of second order. Let us consider the important particular
cases:

1. Large times. As is shown in [14], when t ≥ 10 ⁄ β∗  it is admissible to neglect the terms with 
∂2

∂t2
 and 

∂2

∂t∂x
in equations of the type (19) and (20). With account for this we obtain




ρ − 

1
u1

 
∂
∂x

 (ρD)

 
∂c1

∂t
 + 




Js − 

∂
∂x

 (ρD)



 
∂c1

∂x
 = ρD 

∂2
c1

∂x
2

 , (21)




ρ + 

1
u2

 
∂
∂x

 




β
β
__ ρD








 
∂c2

∂t
 + 




Js − 

∂
∂x

 




β
β
__ ρD








 
∂c2

∂x
 = 

β
β
__ ρD 

∂2
c2

∂x
2  , (22)

where D = 
pl

ρ2
 
u1u2

β∗
. This coefficient can be treated as the coefficient of axial "Taylor" diffusion existing in systems

with a nonuniform field of longitudinal velocities and mass exchange in the transverse direction [15]. Equations (21)
and (22) are the parabolic equations of unsteady-state convective diffusion with variable coefficients of dispersion D

and 
β
β
__ D in the bed core and the annular zone, respectively.

2. The steady-state mode of mixing is realized, as is well known, with constant supply and removal of labeled
material. This case is described by the following equations:




Js − 

∂
∂x

 (ρD)



 
∂c1

∂x
 = ρD 

∂2
c1

∂x
2

 , (23)




Js − 

∂
∂x

 




β

β
__ ρD








 
∂c2

∂x
 = 

β

β
__ ρD 

∂2
c2

∂x
2  . (24)

3. An infinitely large coefficient of exchange β∗  for which any difference between the phases disappears. Here,
generally speaking, two cases are possible:

a) u1, u2 → ∞, but lim
β∗ →∞

  
plu1u2

ρ2β∗
 = D < ∞; in this case, system (19), (20) is reduced to the single equation

ρ 
∂c

∂t
 + 




Js − 

∂
∂x

 (ρD∞)



 
∂c

∂x
 = ρD∞ 

∂2
c

∂x
2 , (25) 

which is the equation of convective diffusion with a variable coefficient of dispersion D∞ in a medium with variable
density ρ;

b) u1, u2 < ∞; then D∞ = 0 and it follows from (25) that

ρ 
∂c

∂t
 + Js 

∂c

∂x
 = 0 . (26)

Equation (26) describes the convective transfer of labeled particles at a velocity Js
 ⁄ ρ.
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4. Absence of exchange between the phases (β∗  = 0). In this case,it is as if the phases are "quasi-isolated" and
only the unilateral transfer of a labeled admixture from the core of the bed to its periphery is carried out by the flux
Jr (Fig. 2). The initial system (17), (18) takes on the form

∂c1

∂t
 + u1 

∂c1

∂x
 = 0 ,

(27)

∂c2

∂t
 − u2 

∂c2

∂x
 = 

p
l
 β1 (c1 − c2) . (28)

Equations (27) and (28) describe the convective transfer of labeled particles upward at a velocity u1 (bed core) and
downward at a velocity u2 (annular zone).

System (17), (18) was used for numerical modeling of the process of mixing of a labeled admixture intro-
duced into the near-bottom fluidized bed at the initial instant of time (Fig. 1). Such an introduction of labeled particles
is most often used in experiments. The corresponding boundary-value problem has the form

∂c1

∂t
 + u1 

∂c1

∂x
 = 

β
p

 (c2 − c1) , (29)

∂c2

∂t
 − u2 

∂c2

∂x
 = 

β
__

l
 (c1 − c2) . (30)

The boundary conditions (unambiguity conditions) are as follows:
initial conditions

c1(0, x) = c2(0, x) = 0 ,  c1(0, H0) = c0 ,

boundary conditions

x = H :   c1 = c2 = c , 

x = H0:

a)  t ≤ T:  ρfb H0 
∂c1

∂t
 + pu1c1 − lu2c2 = 0 ; 

b)  t > T:  ρfb H0 
∂c1

∂t
 + pu1c1 − lu2c2 = Jsc (t − ∆t, H)∗

 .

(31)

We note that the boundary condition at x = H is the corollary of the equation

pu1c1 − lu2c2 = Jsc , (32)

which is the balance of the fluxes of labeled particles at the riser outlet provided that there is good mixing of particles
in the outlet zone (Fig. 1). The quantities p and l which enter into (29)–(31) are related to the mean density of the
bed ρ = p + l. Allowing for this fact, from (4), (7), and (8) we can easily obtain formulas to calculate p and l:

* It is assumed that all the labeled particles escaping from the riser arrive at the CFB again after the time ∆t. The
absence of their recirculation most likely corresponds to the condition ∆t = ∞ (T = ∞).
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p = ρ 
A

A + Bn
 = ρ

u2
′  + (x′)0.82

u1
′  + u2

′
 , (33)

l = ρ 
Bn

A + Bn
 = ρ 

u1
′  − (x′)0.82

u1
′  + u2

′
 . (34)

We write system (29)–(31) in dimensionless form using (33) and (34):

∂c1

∂t′
 + u1

′  
∂c1

∂x′
 = 

1
Pec

 
u1

′  + u2
′

u2
′  + (x′)0.82

 (c2 − c1) , (35)

∂c2

∂t′
 − u2

′  
∂c2

∂x′
 = 

1

Pe
__

c

 
u1

′  + u2
′

u1
′  − (x′)0.82

 (c1 − c2) . (36)

The boundary conditions are

c1(0, x′) = c2(0, x′) = 0 , c1(0, H0
′
) = c0 ,

x′ = 1 :  c1 = c2 = c ,

x′ = H0
′
 : 

a) t′ ≤ T′:

mH0
′
 
∂c1

∂t′
 + 

u2
′  + (H0

′
)0.82

u1
′  + u2

′
 u1

′ c1 − 
u1

′  − (H0
′
)0.82

u1
′  + u2

′
 u2

′ c2 = 0 ; (37)

b) t′ > T′:

Fig. 3. Output curves of mixing for different values of the Pec number (m =
1.208, H0

′  = 0.01, c∞ = 0.144, c0 = 1, Js = 50 kg/(m2⋅sec), u = 6 m/sec, H 
= 12 m).
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mH0
′
 
∂c1

∂t′
 + 

u2
′  + (H0

′
)0.82

u1
′  + u2

′
 u1

′ c1 − 
u1

′  − (H0
′
)0.82

u1
′  + u2

′
 u2

′ c2 = (H0
′
)0.82

 c (t′ − ∆t′, 1) .

The quantity m = ρfb
 ⁄ ρ(H0) is calculated from the formula m = 0.4 Frt

−0.7 , which follows from (5), (9), and (10). As is
seen, system (35)–(37) has only one unknown parameter – the coefficient of exchange β∗  which enters into the num-
bers Pec and Pe

__
c.

The boundary-value problem (35)–(37) was solved numerically by the finite-difference method. An implicit
scheme of first order of accuracy was used. The computation region H0

′  ≤ x′ ≤ 1 was subdivided into 1000 spacings.
Figure 3 shows a calculation of the concentration of labeled particles at the riser outlet (c1 = c2 = c) for different values
of the Pec number. For simplicity, the calculations are made for the case ∆t = 0 (labeled material is immediately trans-
ferred from the point of exit from the riser to the point of re-entry). The steady-state value of the concentration c∞
can easily be calculated from the formula

c∞ = 
c0

1 + 
5.5
m

 ((H0
′
)−0.18

 − 1)
 , (38)

which follows from the equation of material balance of the labeled admixture. Figure 4 compares the data calculated
at ∆t = ∞ and the experimental data from [16], where the quantities c1 and c2 were measured at different points of the
riser with a diameter of 0.305 m. The value of β∗  found by the least-squares method is 0.07 sec−1. We note that the
curves of mixing corresponding to Pec = 0 are calculated from the formula

Fig. 4. Comparison of the calculated curves of mixing with the experimental
data from [16]: a) x′ = 0.55; b) x′ = 0.32; c) x′ = 0.75; points, experiment [16]
(m = 1.6 , H0

′  = 0.074 , c0 = 0.021, Js = 147 kg/(m2⋅sec), u = 4.57 m/sec, H
= 12.2 m).
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c = c0 exp 



− 

(H0
′ )−0.18

m
 (t′ − tdel

′ )



 , (39)

representing the solution of the equation

ρfbH0 
dc

dt′
 + Jsc = 0 , (40)

which follows from the boundary condition (a) in (31) at c1 = c2 = c. According to Eq. (26), the time of arrival of par-
ticles tdel at the given point of the riser is determined in this case as follows:

tdel = 
1
Js

  ∫ 
H0

x

ρdx = 
5.5H
u − ut

 ((x′)0.18
 − (H0

′
)0.18) . (41)

As is seen from Fig. 4, the calculated curves of mixing are in satisfactory agreement with the experimental data on
the concentrations c1 and c2 obtained in [16] and allow one to correctly describe qualitative differences in the func-
tions c1(t) and c2(t) observed in the experiment.

For comparison we considered the one-zone diffusion model with a constant coefficient of dispersion E. The
form of the equation is similar to (25):

ρ 
∂c
∂t

 + 



Js − 

∂
∂x

 (ρE)

 
∂c

∂x
 = ρE 

∂2
c

∂x
2 . (42)

The boundary conditions correspond to (31):

c(0, x) = 0 ,  c(0, H0) = c0 ;

x = H :   
∂c

∂x
 = 0 , (43)

x = H0:

a)  t ≤ T :  ρfb H0 
∂c
∂t

 + Jsc − ρE 
∂c

∂x
 = 0 ;

Fig. 5. Mixing curves calculated by the diffusion model for different values of
the Ped number (x′ = 0.55); points, experiment [16] for the concentration c1.
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b) t > T :  ρfb H0 
∂c

∂t
 + Jsc − ρE 

∂c

∂x
 = Jsc (t − ∆t, H) .

We write system (42), (43) in dimensionless form, using the expression for ρ from (5):

∂c

∂t′
 + 


(x′)0.82

 + 
0.82

Pedx′



 
∂c

∂x′
 = 

1
Ped

 
∂2

c

∂(x′)2
 . (44)

The boundary conditions are

c(0, x′) = 0 ,   c(0, H0
′
) = c0 ;

x′ = 1 :   
∂c

∂x′
 = 0 ,

x′ = H0
′ :

a) t′ ≤ T
′
 : mH0

′
 
∂c

∂t′
 + (H0

′
)0.82

c − 
1

Ped
 
∂c

∂x′
 = 0 ;

b) t′ > T
′
 : mH0

′ ∂c

∂t′
 + (H0

′
)0.82

c − 
1

Ped
 
∂c

∂x′
 = (H0

′
)0.82

 c(t′ − ∆t′, 1) .

(45)

Figure 5 shows the solutions (44) and (45) obtained numerically for different values of Ped at the point
x′ = 0.55. It follows from the comparison of Figs. 4 and 5 that:

1. The diffusion model is capable of describing experimental points only at rather large times (t′ ≥ 1). At
small times, the diffusion model, in contrast to the circulation one, cannot give even qualitative agreement with experi-
mental data and describe different forms of mixing curves in the bed core and the annular zone.

2. Solutions (44) and (45) at large Ped (small coefficients E) virtually coincide with solutions (35)–(37) at
small Pec (large coefficients of exchange β∗ ). This corresponds to the transition of Eq. (42) to (26) at small E and
coincidence of the corresponding boundary conditions.

Thus, the formulated two-zone model of longitudinal mixing of particles in a CFB allows for the main fea-
tures of the process and, as has been shown, is capable of satisfactorily describing experimental curves of mixing. The
simplicity and thorough substantiation of Eqs. (17) and (18) make it possible to efficiently use them in practical cal-
culations.

NOTATION

A, fraction of the horizontal cross section of the riser occupied by ascending particles (bed core); B, fraction

of the horizontal cross section of the riser occupied by descending particles (annular zone); c1 = c1
∗  ⁄ ρ1 and

c2 = c2
∗  ⁄ ρ2, dimensionless concentrations of labeled particles in the bed core and the annular zone; c1

∗  and c2
∗ , concen-

trations of labeled particles in the bed core and the annular zone; c0, initial dimensionless concentration of labeled particles

at x = H0; c = Ac1 + Bc2, mean dimensionless concentration of labeled particles; c∞ = lim
t→∞

 c; D∞ = lim (u1 → ∞,

u2 → ∞, β∗  → ∞); D1, D2, and E, coefficients of dispersion of labeled particles; Frt = 
(u − ut)

2

gH
, Froude number; g, free-fall

acceleration; H, riser height; H0, height of the near-bottom fluidized bed; H0
′  = H0

 ⁄ H; ji, diffusion flow of labeled particles;

Js, circulation mass flux of particles; J
_

s = Js
 ⁄ ρs(u − ut), dimensionless mass flux of particles; l = βρ2; p = Aρ1;
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Pec(u − ut) ⁄ β∗ H, Ped(u − ut)H ⁄ E, Pe
__

c
 ⁄ Pec  ⁄ 




1 + 0.82 

u1
′ u2

′

u1′  + u2′
 Pec 

1

x′




,  Pe′clet numbers; r, radial coordinate; t, time;

t′ = t(u − ut) ⁄ H, dimensionless time; ∆t, time of recirculation (time interval between the escape of labeled particles from

the upper part of the riser to the entry into its base); ∆t′ = ∆t(u − ut) ⁄ H; tdel
′  = tdel(u − ut) ⁄ H; ∆tr, time during which particles

in the bed traverse the part of the riser from x = H0 to x = H; T = ∆tr + ∆t, period of circulation; T ′ = T(u − ut) ⁄ H; u, rate

of filtration of the gas; ut, free-fall velocity of a single particle; u1
′  = u1

 ⁄ (u − ut), u2
′  = u2

 ⁄ (u − ut), u1, and u2, velocity of

particles in the bed core and the annular zone; x, vertical coordinate; x′ = x ⁄ H; β∗ , coefficient of exchange by labeled

particles; β1, coefficient introduced in (11); β = β∗ ρ; β
__

 = β + pβ1; ε, porosity; ρ1 and ρ2, density of the bed in the core

and the annular zone; ρ = Aρ1 + Bρ2, bed density mean over the horizontal cross section of the riser; ρs, density of par-

ticles. Subscripts: 1, bed core; 2, annular zone of the bed; c, circulation model (35)–(37); d, diffusion model (44), (45);
fb, fluidized bed near the gas distributor (near-bottom fluidized bed); r, radial; s, particles; t, free-fall conditions of a
single particle; del, delay.
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